Advertisement

Amazing Power of Strong Small Neodymium Magnet Deadlifts 120 times of its Actual Weight

Amazing Power of Strong Small  Neodymium Magnet Deadlifts 120 times of its Actual Weight Extremely powerful high grade Neodymium, grade N42 Is used in this experiment . They are a lot stronger than normal rare earth magnets.
Overview
Neodymium is a metal which is ferromagnetic (more specifically it shows antiferromagnetic properties), meaning that like iron it can be magnetized to become a magnet, but its Curie temperature (the temperature above which its ferromagnetism disappears) is 19 K (−254.2 °C; −425.5 °F), so in pure form its magnetism only appears at extremely low temperatures. However, compounds of neodymium with transition metals such as iron can have Curie temperatures well above room temperature, and these are used to make neodymium magnets.
The strength of neodymium magnets is due to several factors. The most important is that the tetragonal Nd2Fe14B crystal structure has exceptionally high uniaxial magnetocrystalline anisotropy (HA ≈ 7 T – magnetic field strength H in units of A/m versus magnetic moment in A·m2). This means a crystal of the material preferentially magnetizes along a specific crystal axis, but is very difficult to magnetize in other directions. Like other magnets, the neodymium magnet alloy is composed of microcrystalline grains which are aligned in a powerful magnetic field during manufacture so their magnetic axes all point in the same direction. The resistance of the crystal lattice to turning its direction of magnetization gives the compound a very high coercivity, or resistance to being demagnetized.
Rare Earth
Neodymium magnets are a member of the Rare Earth magnet family and are the most powerful permanent magnets in the world. They are also referred to as NdFeB magnets, or NIB, because they are composed mainly of Neodymium (Nd), Iron (Fe) and Boron (B). They are a relatively new invention and have only recently become affordable for everyday use.
Platings/Coatings
Neodymium magnets are a composition of mostly Neodymium, Iron and Boron. If left exposed to the elements, the iron in the magnet will rust. To protect the magnet from corrosion and to strengthen the brittle magnet material, it is usually preferable for the magnet to be coated. There are a variety of options for coatings, but nickel is the most common and usually preferred. Our nickel plated magnets are actually triple plated with layers of nickel, copper, and nickel again. This triple coating makes our magnets much more durable than the more common single nickel plated magnets. Some other options for coating are zinc, tin, copper, epoxy, silver and gold. Our gold plated magnets are actually quadruple plated with nickel, copper, nickel and a top coating of gold.
Machining
Neodymium material is brittle and prone to chipping and cracking, so it does not machine well by conventional methods. Machining the magnets will generate heat, which if not carefully controlled, can demagnetize the magnet or even ignite the material which is toxic when burned. It is recommended that magnets not be machined.
Demagnetization
Rare Earth magnets have a high resistance to demagnetization, unlike most other types of magnets. They will not lose their magnetization around other magnets or if dropped. They will however, begin to lose strength if they are heated above their maximum operating temperature, which is 176°F (80°C) for standard N grades. They will completely lose their magnetization if heated above their Curie temperature, which is 590°F (310°C) for standard N grades. Some of our magnets are of high temperature material, which can withstand higher temperatures without losing strength.
Strength
If you've never handled neodymium magnets before, you will be amazed at their strength. Neodymium magnets are over 10x stronger than the strongest ceramic magnets. If you are currently using ceramic magnets in your project, you could probably use a much smaller neodymium magnet and have greater holding force.

#Magnets
#SuperStrongMagnets
#NeodymiumMagnets

science,discovery,neodymium,chemical elements,experiments with neodymium,neodymium metal,life hacks for magnet,simple & fun life hacks,awesome tricks,creative ideas,life hacks,awesome magnets,f metals,crazy magnet videos,magnet footage,worlds best,extrem starker magnet,amazing neodymium properties,strong magnets,extremely powerful magnets,

Post a Comment

0 Comments